Estudios preliminares sobre Adsorbentes Lignocelulósicos para la Eliminación de Cefalosporinas
DOI:
https://doi.org/10.29352/mill0216e.40973Palabras clave:
adsorção; modelos cinético; materiais lenhocelulósicos; cefalosporina; Acacia dealbataResumen
Introducción: Se exploró la Acacia dealbata como biosorbente para eliminar la cefalosporina de soluciones acuosas. Buscando demostrar la viabilidad de utilizar materiales lignocelulósicos de bajo costopara eliminar contaminantes, valorizando residuos de otras industrias y reduciendo el impacto ambiental asociado.
Objetivo: El objetivo de este estudio fue evaluar la capacidad de los residuos de acacia para adsorber cefalosporina, analizando su potencial de adsorción y los modelos cinéticos involucrados, explorando su uso en el tratamiento de agua.
Métodos: Esta revisión se llevó a cabo utilizando un enfoque sistemático para identificar, analizar y sintetizar la literatura relevante sobre la presencia e impacto de los antibióticos cefalosporínicos en entornos acuáticos. Paralelamente, se realizaron pruebas de adsorción utilizando soluciones de cefalosporina con una concentración de 15 mg L⁻¹, con un tiempo de agitación entre 10 y 120 minutos. La cinética de adsorción se evaluó con base en los modelos de pseudo-primer orden, pseudo-segundo orden, Elovich y difusión intrapartícula. La adsorción se analizó mediante espectrometría UV-Vis, donde se identificó un pico de absorción característico a 240 nm.
Resultados: Los resultados indicaron que el modelo pseudo-primer orden presentó el mayor coeficiente de determinación (R² = 0,991), sugiriendo que el mecanismo predominante es la adsorción física. Este análisis confirmó la capacidad de la acacia para adsorber cefalosporinas, demostrando su potencial como biosorbente.
Conclusión: Este estudio destaca la relevancia de los biosorbentes, como Acacia dealbata, en el tratamiento de contaminantes de la industria farmacéutica. El uso de materiales sostenibles ofrece una solución prometedora para el tratamiento del agua, abriendo el camino para futuras aplicaciones de la biosorción.
Descargas
Citas
Abdullah, M., Iqbal, J., Ur Rehman, M. S., Khalid, U., Mateen, F., Arshad, S. N., Al-Sehemi, A. G., Algarni, H., Al-Hartomy, O. A., & Fazal, T. (2023). Removal of ceftriaxone sodium antibiotic from pharmaceutical wastewater using an activated carbon-based TiO2 composite: Adsorption and photocatalytic degradation evaluation. Chemosphere, 317, 137834. https://doi.org/10.1016/j.chemosphere.2023.137834
Abramović, B. F., Uzelac, M. M., Armaković, S. J., Gašić, U., Četojević-Simin, D. D., & Armaković, S. (2021). Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: Degradation kinetics, pathways, and toxicity. Science of the Total Environment, 768, 144991. https://doi.org/10.1016/j.scitotenv.2021.144991
Akhtar, J., Amin, N. A. S., & Shahzad, K. (2016). A review on removal of pharmaceuticals from water by adsorption. Desalination and Water Treatment, 57, 12842–12860. https://doi.org/10.1080/19443994.2015.1051121
Ali, I., ALOthman, Z. A., & Mbianda, X. Y. (2023). Preparation and characterization of nanoporous carbon for removal of amoxicillin antibiotic from water: Modelling, kinetics and thermodynamic studies. Inorganic Chemistry Communications, 155, 111006. https://doi.org/10.1016/j.inoche.2023.111006
Baccar, R., Sarrà, M., Bouzid, J., Feki, M., & Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal, 211–212, 310–317. https://doi.org/10.1016/j.cej.2012.09.099
Caique Alves, T., Cabrera-Codony, A., Barceló, D., Rodriguez-Mozaz, S., Pinheiro, A., & Gonzalez-Olmos, R. (2018). Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon. Water Research, 144, 402–412. https://doi.org/10.1016/j.watres.2018.07.037
Carabineiro, S. A. C., Thavorn-Amornsri, T., Pereira, M. F. R., & Figueiredo, J. L. (2011). Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 45, 4583–4591. https://doi.org/10.1016/j.watres.2011.06.008
Chernomorova, M. A., Myakinina, M. S., Zhinzhilo, V. A., & Uflyand, I. E. (2023). Analytical determination of cephalosporin antibiotics using coordination polymer based on cobalt terephthalate as a sorbent. Polymers, 15(3), 548. https://doi.org/10.3390/polym15030548
Correia, A., & Marcano, L. (2015). Presence and elimination of pharmaceutical compounds in wastewater treatment plants: Worldwide review and national perspective. Boletín de Malariología y Salud Ambiental, 55, 1–18. https://ve.scielo.org/pdf/bmsa/v55n1/art01.pdf
Cruz-Lopes, L., Macena, M., Esteves, B., & Santos-Vieira, I. (2022). Lignocellulosic materials used as biosorbents for the capture of nickel (II) in aqueous solution. Applied Sciences, 12, 933. https://doi.org/10.3390/app12020933
Da Trindade, M. T., & Salgado, H. R. N. (2018). A critical review of analytical methods for determination of ceftriaxone sodium. Critical Reviews in Analytical Chemistry, 48, 95–101. https://doi.org/10.1080/10408347.2017.1398063
Das, N., Madhavan, J., Selvi, A., & Das, D. (2019). An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech, 9. https://doi.org/10.1007/s13205-019-1766-9
Gholamiyan, S., Hamzehloo, M., & Farrokhnia, A. (2020). RSM optimized adsorptive removal of erythromycin using magnetic activated carbon: Adsorption isotherm, kinetic modeling and thermodynamic studies. Sustainable Chemistry and Pharmacy, 17, 100309. https://doi.org/10.1016/j.scp.2020.100309
Gracia-Lor, E., Sancho, J. V., Serrano, R., & Hernandez, F. (2012). Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere, 87, 453–462. https://doi.org/10.1016/j.chemosphere.2011.12.025
Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76, 332–340. https://doi.org/10.1205/095758298529696
Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sanchez, R., Ventura, F., Petrovic, M., & Barceló, D. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45, 1165–1176. https://doi.org/10.1016/j.watres.2010.11.010
Khan, A. H., Khan, N. A., Zubair, M., Shaida, M. A., Manzar, M. S., Abutaleb, A., Naushad, M., & Iqbal, J. (2022). Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environmental Research, 204, 112243. https://doi.org/10.1016/j.envres.2021.112243
Khasawneh, O. F. S., & Palaniandy, P. (2021). Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Safety and Environmental Protection, 150, 532–556. https://doi.org/10.1016/j.psep.2021.04.045
Kowalska, K., Felis, E., Gnida, A., Luczkiewicz, A., Ziembinska-Buczynska, A., & Surmacz-Gorska, J. (2020). Removal of antibacterial drugs in urban wastewater treatment plants. Desalination and Water Treatment, 199, 152–158. https://doi.org/10.5004/dwt.2020.25463
Lach, J. (2024). Kinetics, statics and thermodynamics of ampicillin adsorption on microporous carbon sorbents. Desalination and Water Treatment, 317, 100144. https://doi.org/10.1016/j.dwt.2024.100144
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. https://doi.org/10.4236/jwarp.2016.813095
Li, B., & Zhang, T. (2013). Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination. Water Research, 47, 2970–2982. https://doi.org/10.1016/j.watres.2013.03.001
Macena, M. W. (2021). Análise do potencial de adsorção de iões metálicos em solução aquosa por resíduos lenhocelulósicos. https://doi.org/10.13140/RG.2.2.11381.45283
Mardani, G., Ahankoub, M., Alikhani Faradonbeh, M., Raeisi Shahraki, H., & Fadaei, A. (2023). Biodegradation of ceftriaxone in soil using dioxygenase-producing genetically engineered Pseudomonas putida. Bioremediation Journal, 27, 400–411. https://doi.org/10.1080/10889868.2022.2057412
Mohammadi Nezhad, A., Talaiekhozani, A., Mojiri, A., Sonne, C., Cho, J., Rezania, S., & Vasseghian, Y. (2023). Photocatalytic removal of ceftriaxone from wastewater using TiO2/MgO under ultraviolet radiation. Environmental Research, 229, 115915. https://doi.org/10.1016/j.envres.2023.115915
Naeini, A., & Moradi, S. (2023). Adsorption method for removal of pharmaceuticals from wastewater: Review. Iranian Journal of Materials Science and Engineering, 20. https://doi.org/10.22068/ijmse.3385
National Center for Biotechnology Information. (2025, February 4). Ceftriaxone sodium. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/71307090
Pereira, J. M., Calisto, V., & Santos, S. M. (2019). Computational optimization of bioadsorbents for the removal of pharmaceuticals from water. Journal of Molecular Liquids, 279, 669–676. https://doi.org/10.1016/j.molliq.2019.01.167
Phan, H. N. Q., Leu, H.-J., & Nguyen, V. N. D. (2024). Enhancing pharmaceutical wastewater treatment: Ozone-assisted electrooxidation and precision optimization via response surface methodology. Journal of Water Process Engineering, 58, 104782. https://doi.org/10.1016/j.jwpe.2024.104782
Puddoo, H., Nithyanandam, R., & Nguyenhuynh, T. (2017). Degradation of the antibiotic ceftriaxone by Fenton oxidation process and compound analysis. Journal of Physical Science, 28, 95–114. https://doi.org/10.21315/jps2017.28.3.7
Ribeiro, A. R., Sures, B., & Schmidt, T. C. (2018). Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environmental Pollution, 241, 1153–1166. https://doi.org/10.1016/j.envpol.2018.06.040
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water: A review. Chemosphere, 93, 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059
Roginsky, S., & Zeldovich, Y. B. (1934). The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Physicochimica U.R.S.S, 1, 2019. https://doi.org/10.1021/ja01417a002
Samal, K., Mahapatra, S., & Ali, M. H. (2022). Pharmaceutical wastewater as emerging contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus, 6, 100076. https://doi.org/10.1016/j.nexus.2022.100076
Sen, U., Esteves, B., Aguiar, T., & Pereira, H. (2023). Removal of antibiotics by biochars: A critical review. Applied Sciences, 13(21), 11963. https://doi.org/10.3390/app132111963
Sophia, A. C., Lima, E. C., Allaudeen, N., & Rajan, S. (2016). Application of graphene-based materials for adsorption of pharmaceutical traces from water and wastewater: A review. Desalination and Water Treatment, 57, 27573–27586. https://doi.org/10.1080/19443994.2016.1172989
Sundararaman, S., & Saravanane, R. (2010). Effect of loading rate and HRT on the removal of cephalosporin and their intermediates during the operation of a membrane bioreactor treating pharmaceutical wastewater. Water Science & Technology, 61(7), 1907–1914. https://doi.org/10.2166/wst.2010.881
Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12. https://doi.org/10.1016/j.biortech.2016.11.042
Tuc Dinh, Q., Alliot, F., Moreau-Guigon, E., Eurin, J., Chevreuil, M., & Labadie, P. (2011). Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta, 85(3), 1238–1245. https://doi.org/10.1016/j.talanta.2011.05.013
Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(3), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Wang, B., Li, H., Liu, T., & Guo, J. (2021). Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors. Chemosphere, 263, 128224. https://doi.org/10.1016/j.chemosphere.2020.128224
Wang, X. H., & Lin, A. Y. C. (2012). Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environmental Science & Technology, 46(22), 12417–12426. https://doi.org/10.1021/es301929e
Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of The Total Environment, 407(8), 2711–2723. https://doi.org/10.1016/j.scitotenv.2008.11.059
Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430
Yeo, J. Y. J., Aqsha, A., Ismadji, S., & Sunarso, J. (2024). Adsorption kinetics of amoxicillin, ampicillin, and doripenem on organobentonite. AIP Conference Proceedings, 3073(1). https://doi.org/10.1063/5.0123456 (Verifique o DOI correto)
Zhang, S., Liu, C., Yuan, Y., Fan, M., Zhang, D., Wang, D., & Xu, Y. (2020). Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue-derived porous gel adsorbent. Bioresource Technology, 311, 123520. https://doi.org/10.1016/j.biortech.2020.123520
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Millenium - Journal of Education, Technologies, and Health

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que sometan propuestas para esta revista estarán de acuerdo con los siguientes términos:
a) Los artículos serán publicados según la licencia Licença Creative Commons (CC BY 4.0), conforme el régimen open-access, sin cualquier coste para el autor o para el lector.
b) Los autores conservan los derechos de autor y conceden a la revista el derecho de la primera publicación, se permite la divulgación libre del trabajo, desde que sea correctamente atribuida la autoría y la publicación inicial en esta revista.
c) Los autores están autorización para firmar contratos adicionales separadamente, para la distribución no exclusiva de la versión del trabajo publicada en esta revista (ej.: publicar en un repositorio institucional o como capítulo de un libro), con reconocimiento de la autoría y publicación inicial e esta revista.
d) Los autores tienen permiso y son alentados a publicar y distribuir su trabajo on-line (ej.: en repositorios instituciones o en su página personal) ya que eso podrá generar alteraciones productivas, así como aumentar el impacto y la citación del trabajo publicado.
Documentos necesarios para la sumisión
Plantilla del artículo (formato editable)