Estudos preliminares de Adsorventes Lenhocelulósicos para a Remoção de Cefalosporinas

Authors

DOI:

https://doi.org/10.29352/mill0216e.40973

Keywords:

adsorption; kinetics models; lignocellulosic materials; cephalosporin; Acacia dealbata

Abstract

Introduction: Acacia dealbata was explored as a biosorbent to remove cephalosporin from aqueous solutions. This study intends to demonstrate the feasibility of using lignocellulosic low-cost materials in the removal of pollutants, valorizing waste from other industries, and reducing the associated environmental impact.

Objective: The aim of this study was to evaluate the capacity of acacia residues to adsorb cephalosporin, analyze its adsorption potential, and examine the kinetic models involved in order to explore its use in water treatment.

Methods: This review was conducted using a systematic approach to identify, analyze, and synthesize the relevant literature on the presence and impact of cephalosporin antibiotics in aquatic environments. In parallel, adsorption tests were performed using cephalosporin solutions with a concentration of 15 mg L⁻¹, varying the stirring time between 10 and 120 minutes. The adsorption kinetics were evaluated based on the pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion models. The adsorption was analyzed by UV-Vis spectrometry, where a characteristic absorption peak at 240 nm was identified.

Results: The results indicated that the pseudo-first order model presented the highest coefficient of determination (R² = 0.991), suggesting that the predominant mechanism is physical adsorption. This analysis confirmed the ability of acacia to adsorb cephalosporins, evidencing its potential as a biosorbent.

Conclusion: This study highlights the relevance of biosorbents, such as Acacia dealbata, in the treatment of pollutants from the pharmaceutical industry. The use of sustainable materials offers a promising solution for water treatment, paving the way for future applications in the field of biosorption.

Downloads

References

Abdullah, M., Iqbal, J., Ur Rehman, M. S., Khalid, U., Mateen, F., Arshad, S. N., Al-Sehemi, A. G., Algarni, H., Al-Hartomy, O. A., & Fazal, T. (2023). Removal of ceftriaxone sodium antibiotic from pharmaceutical wastewater using an activated carbon-based TiO2 composite: Adsorption and photocatalytic degradation evaluation. Chemosphere, 317, 137834. https://doi.org/10.1016/j.chemosphere.2023.137834

Abramović, B. F., Uzelac, M. M., Armaković, S. J., Gašić, U., Četojević-Simin, D. D., & Armaković, S. (2021). Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: Degradation kinetics, pathways, and toxicity. Science of the Total Environment, 768, 144991. https://doi.org/10.1016/j.scitotenv.2021.144991

Akhtar, J., Amin, N. A. S., & Shahzad, K. (2016). A review on removal of pharmaceuticals from water by adsorption. Desalination and Water Treatment, 57, 12842–12860. https://doi.org/10.1080/19443994.2015.1051121

Ali, I., ALOthman, Z. A., & Mbianda, X. Y. (2023). Preparation and characterization of nanoporous carbon for removal of amoxicillin antibiotic from water: Modelling, kinetics and thermodynamic studies. Inorganic Chemistry Communications, 155, 111006. https://doi.org/10.1016/j.inoche.2023.111006

Baccar, R., Sarrà, M., Bouzid, J., Feki, M., & Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal, 211–212, 310–317. https://doi.org/10.1016/j.cej.2012.09.099

Caique Alves, T., Cabrera-Codony, A., Barceló, D., Rodriguez-Mozaz, S., Pinheiro, A., & Gonzalez-Olmos, R. (2018). Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon. Water Research, 144, 402–412. https://doi.org/10.1016/j.watres.2018.07.037

Carabineiro, S. A. C., Thavorn-Amornsri, T., Pereira, M. F. R., & Figueiredo, J. L. (2011). Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 45, 4583–4591. https://doi.org/10.1016/j.watres.2011.06.008

Chernomorova, M. A., Myakinina, M. S., Zhinzhilo, V. A., & Uflyand, I. E. (2023). Analytical determination of cephalosporin antibiotics using coordination polymer based on cobalt terephthalate as a sorbent. Polymers, 15(3), 548. https://doi.org/10.3390/polym15030548

Correia, A., & Marcano, L. (2015). Presence and elimination of pharmaceutical compounds in wastewater treatment plants: Worldwide review and national perspective. Boletín de Malariología y Salud Ambiental, 55, 1–18. https://ve.scielo.org/pdf/bmsa/v55n1/art01.pdf

Cruz-Lopes, L., Macena, M., Esteves, B., & Santos-Vieira, I. (2022). Lignocellulosic materials used as biosorbents for the capture of nickel (II) in aqueous solution. Applied Sciences, 12, 933. https://doi.org/10.3390/app12020933

Da Trindade, M. T., & Salgado, H. R. N. (2018). A critical review of analytical methods for determination of ceftriaxone sodium. Critical Reviews in Analytical Chemistry, 48, 95–101. https://doi.org/10.1080/10408347.2017.1398063

Das, N., Madhavan, J., Selvi, A., & Das, D. (2019). An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech, 9. https://doi.org/10.1007/s13205-019-1766-9

Gholamiyan, S., Hamzehloo, M., & Farrokhnia, A. (2020). RSM optimized adsorptive removal of erythromycin using magnetic activated carbon: Adsorption isotherm, kinetic modeling and thermodynamic studies. Sustainable Chemistry and Pharmacy, 17, 100309. https://doi.org/10.1016/j.scp.2020.100309

Gracia-Lor, E., Sancho, J. V., Serrano, R., & Hernandez, F. (2012). Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere, 87, 453–462. https://doi.org/10.1016/j.chemosphere.2011.12.025

Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76, 332–340. https://doi.org/10.1205/095758298529696

Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sanchez, R., Ventura, F., Petrovic, M., & Barceló, D. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45, 1165–1176. https://doi.org/10.1016/j.watres.2010.11.010

Khan, A. H., Khan, N. A., Zubair, M., Shaida, M. A., Manzar, M. S., Abutaleb, A., Naushad, M., & Iqbal, J. (2022). Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environmental Research, 204, 112243. https://doi.org/10.1016/j.envres.2021.112243

Khasawneh, O. F. S., & Palaniandy, P. (2021). Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Safety and Environmental Protection, 150, 532–556. https://doi.org/10.1016/j.psep.2021.04.045

Kowalska, K., Felis, E., Gnida, A., Luczkiewicz, A., Ziembinska-Buczynska, A., & Surmacz-Gorska, J. (2020). Removal of antibacterial drugs in urban wastewater treatment plants. Desalination and Water Treatment, 199, 152–158. https://doi.org/10.5004/dwt.2020.25463

Lach, J. (2024). Kinetics, statics and thermodynamics of ampicillin adsorption on microporous carbon sorbents. Desalination and Water Treatment, 317, 100144. https://doi.org/10.1016/j.dwt.2024.100144

Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. https://doi.org/10.4236/jwarp.2016.813095

Li, B., & Zhang, T. (2013). Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination. Water Research, 47, 2970–2982. https://doi.org/10.1016/j.watres.2013.03.001

Macena, M. W. (2021). Análise do potencial de adsorção de iões metálicos em solução aquosa por resíduos lenhocelulósicos. https://doi.org/10.13140/RG.2.2.11381.45283

Mardani, G., Ahankoub, M., Alikhani Faradonbeh, M., Raeisi Shahraki, H., & Fadaei, A. (2023). Biodegradation of ceftriaxone in soil using dioxygenase-producing genetically engineered Pseudomonas putida. Bioremediation Journal, 27, 400–411. https://doi.org/10.1080/10889868.2022.2057412

Mohammadi Nezhad, A., Talaiekhozani, A., Mojiri, A., Sonne, C., Cho, J., Rezania, S., & Vasseghian, Y. (2023). Photocatalytic removal of ceftriaxone from wastewater using TiO2/MgO under ultraviolet radiation. Environmental Research, 229, 115915. https://doi.org/10.1016/j.envres.2023.115915

Naeini, A., & Moradi, S. (2023). Adsorption method for removal of pharmaceuticals from wastewater: Review. Iranian Journal of Materials Science and Engineering, 20. https://doi.org/10.22068/ijmse.3385

National Center for Biotechnology Information. (2025, February 4). Ceftriaxone sodium. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/71307090

Pereira, J. M., Calisto, V., & Santos, S. M. (2019). Computational optimization of bioadsorbents for the removal of pharmaceuticals from water. Journal of Molecular Liquids, 279, 669–676. https://doi.org/10.1016/j.molliq.2019.01.167

Phan, H. N. Q., Leu, H.-J., & Nguyen, V. N. D. (2024). Enhancing pharmaceutical wastewater treatment: Ozone-assisted electrooxidation and precision optimization via response surface methodology. Journal of Water Process Engineering, 58, 104782. https://doi.org/10.1016/j.jwpe.2024.104782

Puddoo, H., Nithyanandam, R., & Nguyenhuynh, T. (2017). Degradation of the antibiotic ceftriaxone by Fenton oxidation process and compound analysis. Journal of Physical Science, 28, 95–114. https://doi.org/10.21315/jps2017.28.3.7

Ribeiro, A. R., Sures, B., & Schmidt, T. C. (2018). Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environmental Pollution, 241, 1153–1166. https://doi.org/10.1016/j.envpol.2018.06.040

Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water: A review. Chemosphere, 93, 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

Roginsky, S., & Zeldovich, Y. B. (1934). The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Physicochimica U.R.S.S, 1, 2019. https://doi.org/10.1021/ja01417a002

Samal, K., Mahapatra, S., & Ali, M. H. (2022). Pharmaceutical wastewater as emerging contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus, 6, 100076. https://doi.org/10.1016/j.nexus.2022.100076

Sen, U., Esteves, B., Aguiar, T., & Pereira, H. (2023). Removal of antibiotics by biochars: A critical review. Applied Sciences, 13(21), 11963. https://doi.org/10.3390/app132111963

Sophia, A. C., Lima, E. C., Allaudeen, N., & Rajan, S. (2016). Application of graphene-based materials for adsorption of pharmaceutical traces from water and wastewater: A review. Desalination and Water Treatment, 57, 27573–27586. https://doi.org/10.1080/19443994.2016.1172989

Sundararaman, S., & Saravanane, R. (2010). Effect of loading rate and HRT on the removal of cephalosporin and their intermediates during the operation of a membrane bioreactor treating pharmaceutical wastewater. Water Science & Technology, 61(7), 1907–1914. https://doi.org/10.2166/wst.2010.881

Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12. https://doi.org/10.1016/j.biortech.2016.11.042

Tuc Dinh, Q., Alliot, F., Moreau-Guigon, E., Eurin, J., Chevreuil, M., & Labadie, P. (2011). Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta, 85(3), 1238–1245. https://doi.org/10.1016/j.talanta.2011.05.013

Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(3), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Wang, B., Li, H., Liu, T., & Guo, J. (2021). Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors. Chemosphere, 263, 128224. https://doi.org/10.1016/j.chemosphere.2020.128224

Wang, X. H., & Lin, A. Y. C. (2012). Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environmental Science & Technology, 46(22), 12417–12426. https://doi.org/10.1021/es301929e

Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of The Total Environment, 407(8), 2711–2723. https://doi.org/10.1016/j.scitotenv.2008.11.059

Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430

Yeo, J. Y. J., Aqsha, A., Ismadji, S., & Sunarso, J. (2024). Adsorption kinetics of amoxicillin, ampicillin, and doripenem on organobentonite. AIP Conference Proceedings, 3073(1). https://doi.org/10.1063/5.0123456 (Verifique o DOI correto)

Zhang, S., Liu, C., Yuan, Y., Fan, M., Zhang, D., Wang, D., & Xu, Y. (2020). Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue-derived porous gel adsorbent. Bioresource Technology, 311, 123520. https://doi.org/10.1016/j.biortech.2020.123520

Downloads

Published

2025-04-23

How to Cite

Cruz-Lopes, L., Araújo, R., Lopes, A., Macena, M., & Esteves, B. (2025). Estudos preliminares de Adsorventes Lenhocelulósicos para a Remoção de Cefalosporinas. Millenium - Journal of Education, Technologies, and Health, 2(16e), e40973. https://doi.org/10.29352/mill0216e.40973

Issue

Section

Engineering, Technology, Management and Tourism