Estudos preliminares de Adsorventes Lenhocelulósicos para a Remoção de Cefalosporinas

Autores

DOI:

https://doi.org/10.29352/mill0216e.40973

Palavras-chave:

adsorción; modelos cinéticos; materiales lignocelulósicos; cefalosporina; Acacia dealbata

Resumo

Introdução: A Acacia dealbata foi explorada como biosorvente para remover cefalosporina de soluções aquosas. Este estudo procura demonstrar a viabilidade de utilizar materiais lenhocelulósicos de baixo custona remoção de poluentes, valorizando resíduos de outras indústrias e reduzindo o impacto ambiental associado.

Objetivo: O objetivo pretendeu avaliar a capacidade dos resíduos de acácia em adsorver a cefalosporina, analisando o seu potencial de adsorção e os modelos cinéticos envolvidos, de forma a explorar o seu uso no tratamento de águas.

Métodos: Esta revisão foi conduzida utilizando uma abordagem sistemática para identificar, analisar e sintetizar a literatura relevante sobre a presença e o impacto dos antibióticos cefalosporínicos em ambientes aquáticos. Paralelamente, foram realizados testes de adsorção utilizando soluções de cefalosporina com concentração de 15 mg L⁻¹, variando o tempo de agitação entre 10 e 120 minutos. A cinética de adsorção foi avaliada com base nos modelos de pseudo-primeira ordem, pseudo-segunda ordem, Elovich e difusão intrapartícula. A adsorção foi analisada através de espectrometria UV-Vis, onde se identificou um pico de absorção característico a 240 nm.

Resultados: Os resultados indicaram que o modelo de pseudo-primeira ordem apresentou o coeficiente de determinação mais elevado (R² = 0,991), sugerindo que o mecanismo predominante é a adsorção física. Esta análise confirmou a capacidade da acácia em adsorver cefalosporinas, evidenciando o seu potencial como biosorvente.

Conclusão: Este estudo sublinha a relevância dos biosorventes, como a Acacia dealbata, no tratamento de poluentes da indústria farmacêutica. A utilização de materiais sustentáveis oferece uma solução promissora para o tratamento de águas, abrindo caminho para futuras aplicações no campo da biossorção.

Downloads

Não há dados estatísticos.

Referências

Abdullah, M., Iqbal, J., Ur Rehman, M. S., Khalid, U., Mateen, F., Arshad, S. N., Al-Sehemi, A. G., Algarni, H., Al-Hartomy, O. A., & Fazal, T. (2023). Removal of ceftriaxone sodium antibiotic from pharmaceutical wastewater using an activated carbon-based TiO2 composite: Adsorption and photocatalytic degradation evaluation. Chemosphere, 317, 137834. https://doi.org/10.1016/j.chemosphere.2023.137834

Abramović, B. F., Uzelac, M. M., Armaković, S. J., Gašić, U., Četojević-Simin, D. D., & Armaković, S. (2021). Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: Degradation kinetics, pathways, and toxicity. Science of the Total Environment, 768, 144991. https://doi.org/10.1016/j.scitotenv.2021.144991

Akhtar, J., Amin, N. A. S., & Shahzad, K. (2016). A review on removal of pharmaceuticals from water by adsorption. Desalination and Water Treatment, 57, 12842–12860. https://doi.org/10.1080/19443994.2015.1051121

Ali, I., ALOthman, Z. A., & Mbianda, X. Y. (2023). Preparation and characterization of nanoporous carbon for removal of amoxicillin antibiotic from water: Modelling, kinetics and thermodynamic studies. Inorganic Chemistry Communications, 155, 111006. https://doi.org/10.1016/j.inoche.2023.111006

Baccar, R., Sarrà, M., Bouzid, J., Feki, M., & Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal, 211–212, 310–317. https://doi.org/10.1016/j.cej.2012.09.099

Caique Alves, T., Cabrera-Codony, A., Barceló, D., Rodriguez-Mozaz, S., Pinheiro, A., & Gonzalez-Olmos, R. (2018). Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon. Water Research, 144, 402–412. https://doi.org/10.1016/j.watres.2018.07.037

Carabineiro, S. A. C., Thavorn-Amornsri, T., Pereira, M. F. R., & Figueiredo, J. L. (2011). Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 45, 4583–4591. https://doi.org/10.1016/j.watres.2011.06.008

Chernomorova, M. A., Myakinina, M. S., Zhinzhilo, V. A., & Uflyand, I. E. (2023). Analytical determination of cephalosporin antibiotics using coordination polymer based on cobalt terephthalate as a sorbent. Polymers, 15(3), 548. https://doi.org/10.3390/polym15030548

Correia, A., & Marcano, L. (2015). Presence and elimination of pharmaceutical compounds in wastewater treatment plants: Worldwide review and national perspective. Boletín de Malariología y Salud Ambiental, 55, 1–18. https://ve.scielo.org/pdf/bmsa/v55n1/art01.pdf

Cruz-Lopes, L., Macena, M., Esteves, B., & Santos-Vieira, I. (2022). Lignocellulosic materials used as biosorbents for the capture of nickel (II) in aqueous solution. Applied Sciences, 12, 933. https://doi.org/10.3390/app12020933

Da Trindade, M. T., & Salgado, H. R. N. (2018). A critical review of analytical methods for determination of ceftriaxone sodium. Critical Reviews in Analytical Chemistry, 48, 95–101. https://doi.org/10.1080/10408347.2017.1398063

Das, N., Madhavan, J., Selvi, A., & Das, D. (2019). An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech, 9. https://doi.org/10.1007/s13205-019-1766-9

Gholamiyan, S., Hamzehloo, M., & Farrokhnia, A. (2020). RSM optimized adsorptive removal of erythromycin using magnetic activated carbon: Adsorption isotherm, kinetic modeling and thermodynamic studies. Sustainable Chemistry and Pharmacy, 17, 100309. https://doi.org/10.1016/j.scp.2020.100309

Gracia-Lor, E., Sancho, J. V., Serrano, R., & Hernandez, F. (2012). Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere, 87, 453–462. https://doi.org/10.1016/j.chemosphere.2011.12.025

Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76, 332–340. https://doi.org/10.1205/095758298529696

Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sanchez, R., Ventura, F., Petrovic, M., & Barceló, D. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45, 1165–1176. https://doi.org/10.1016/j.watres.2010.11.010

Khan, A. H., Khan, N. A., Zubair, M., Shaida, M. A., Manzar, M. S., Abutaleb, A., Naushad, M., & Iqbal, J. (2022). Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environmental Research, 204, 112243. https://doi.org/10.1016/j.envres.2021.112243

Khasawneh, O. F. S., & Palaniandy, P. (2021). Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Safety and Environmental Protection, 150, 532–556. https://doi.org/10.1016/j.psep.2021.04.045

Kowalska, K., Felis, E., Gnida, A., Luczkiewicz, A., Ziembinska-Buczynska, A., & Surmacz-Gorska, J. (2020). Removal of antibacterial drugs in urban wastewater treatment plants. Desalination and Water Treatment, 199, 152–158. https://doi.org/10.5004/dwt.2020.25463

Lach, J. (2024). Kinetics, statics and thermodynamics of ampicillin adsorption on microporous carbon sorbents. Desalination and Water Treatment, 317, 100144. https://doi.org/10.1016/j.dwt.2024.100144

Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. https://doi.org/10.4236/jwarp.2016.813095

Li, B., & Zhang, T. (2013). Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination. Water Research, 47, 2970–2982. https://doi.org/10.1016/j.watres.2013.03.001

Macena, M. W. (2021). Análise do potencial de adsorção de iões metálicos em solução aquosa por resíduos lenhocelulósicos. https://doi.org/10.13140/RG.2.2.11381.45283

Mardani, G., Ahankoub, M., Alikhani Faradonbeh, M., Raeisi Shahraki, H., & Fadaei, A. (2023). Biodegradation of ceftriaxone in soil using dioxygenase-producing genetically engineered Pseudomonas putida. Bioremediation Journal, 27, 400–411. https://doi.org/10.1080/10889868.2022.2057412

Mohammadi Nezhad, A., Talaiekhozani, A., Mojiri, A., Sonne, C., Cho, J., Rezania, S., & Vasseghian, Y. (2023). Photocatalytic removal of ceftriaxone from wastewater using TiO2/MgO under ultraviolet radiation. Environmental Research, 229, 115915. https://doi.org/10.1016/j.envres.2023.115915

Naeini, A., & Moradi, S. (2023). Adsorption method for removal of pharmaceuticals from wastewater: Review. Iranian Journal of Materials Science and Engineering, 20. https://doi.org/10.22068/ijmse.3385

National Center for Biotechnology Information. (2025, February 4). Ceftriaxone sodium. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/71307090

Pereira, J. M., Calisto, V., & Santos, S. M. (2019). Computational optimization of bioadsorbents for the removal of pharmaceuticals from water. Journal of Molecular Liquids, 279, 669–676. https://doi.org/10.1016/j.molliq.2019.01.167

Phan, H. N. Q., Leu, H.-J., & Nguyen, V. N. D. (2024). Enhancing pharmaceutical wastewater treatment: Ozone-assisted electrooxidation and precision optimization via response surface methodology. Journal of Water Process Engineering, 58, 104782. https://doi.org/10.1016/j.jwpe.2024.104782

Puddoo, H., Nithyanandam, R., & Nguyenhuynh, T. (2017). Degradation of the antibiotic ceftriaxone by Fenton oxidation process and compound analysis. Journal of Physical Science, 28, 95–114. https://doi.org/10.21315/jps2017.28.3.7

Ribeiro, A. R., Sures, B., & Schmidt, T. C. (2018). Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environmental Pollution, 241, 1153–1166. https://doi.org/10.1016/j.envpol.2018.06.040

Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water: A review. Chemosphere, 93, 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

Roginsky, S., & Zeldovich, Y. B. (1934). The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Physicochimica U.R.S.S, 1, 2019. https://doi.org/10.1021/ja01417a002

Samal, K., Mahapatra, S., & Ali, M. H. (2022). Pharmaceutical wastewater as emerging contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus, 6, 100076. https://doi.org/10.1016/j.nexus.2022.100076

Sen, U., Esteves, B., Aguiar, T., & Pereira, H. (2023). Removal of antibiotics by biochars: A critical review. Applied Sciences, 13(21), 11963. https://doi.org/10.3390/app132111963

Sophia, A. C., Lima, E. C., Allaudeen, N., & Rajan, S. (2016). Application of graphene-based materials for adsorption of pharmaceutical traces from water and wastewater: A review. Desalination and Water Treatment, 57, 27573–27586. https://doi.org/10.1080/19443994.2016.1172989

Sundararaman, S., & Saravanane, R. (2010). Effect of loading rate and HRT on the removal of cephalosporin and their intermediates during the operation of a membrane bioreactor treating pharmaceutical wastewater. Water Science & Technology, 61(7), 1907–1914. https://doi.org/10.2166/wst.2010.881

Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12. https://doi.org/10.1016/j.biortech.2016.11.042

Tuc Dinh, Q., Alliot, F., Moreau-Guigon, E., Eurin, J., Chevreuil, M., & Labadie, P. (2011). Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta, 85(3), 1238–1245. https://doi.org/10.1016/j.talanta.2011.05.013

Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(3), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Wang, B., Li, H., Liu, T., & Guo, J. (2021). Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors. Chemosphere, 263, 128224. https://doi.org/10.1016/j.chemosphere.2020.128224

Wang, X. H., & Lin, A. Y. C. (2012). Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environmental Science & Technology, 46(22), 12417–12426. https://doi.org/10.1021/es301929e

Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of The Total Environment, 407(8), 2711–2723. https://doi.org/10.1016/j.scitotenv.2008.11.059

Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430

Yeo, J. Y. J., Aqsha, A., Ismadji, S., & Sunarso, J. (2024). Adsorption kinetics of amoxicillin, ampicillin, and doripenem on organobentonite. AIP Conference Proceedings, 3073(1). https://doi.org/10.1063/5.0123456 (Verifique o DOI correto)

Zhang, S., Liu, C., Yuan, Y., Fan, M., Zhang, D., Wang, D., & Xu, Y. (2020). Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue-derived porous gel adsorbent. Bioresource Technology, 311, 123520. https://doi.org/10.1016/j.biortech.2020.123520

Downloads

Publicado

2025-04-23

Como Citar

Cruz Lopes, L., Araújo, R., Lopes, A., Macena, M., & Esteves, B. (2025). Estudos preliminares de Adsorventes Lenhocelulósicos para a Remoção de Cefalosporinas. Millenium - Journal of Education, Technologies, and Health, 2(16e), e40973. https://doi.org/10.29352/mill0216e.40973

Edição

Secção

Engenharias, tecnologia, gestão e turismo