Probabilidade bayesiana e regressão logística na avaliação da susceptibilidade à ocorrência de incêndios de grande magnitude
DOI:
https://doi.org/10.18055/Finis1353Abstract
Este artigo tem por objectivo a aplicação de um modelo de susceptibilidade orientado para a aplicação a incêndios de grande magnitude, pequena parte do total de ocorrências que origina a grande maioria dos estragos anuais. Esta relação frequência/magnitude é característica dos regimes de fogo dos países do Sul da Europa. Com base na cartografia das áreas ardidas, no período 1990-2007 no distrito de Castelo Branco, é proposto um método de identificação dos incêndios de grande magnitude e são comparadas duas técnicas de integração de dados, assentes em Probabilidade Bayesiana e Regressão Logística. Os resultados mostram uma capacidade preditiva superior da técnica Bayesiana, e um ajustamento do modelo ao comportamento dos incêndios considerados de grande magnitude, por oposição a todos os incêndios.Embora deva ser alvo de desenvolvimentos futuros, o modelo proposto pretende complementar outras formas de avaliação da susceptibilidade/perigosidade, salientando as áreas onde tendem a concentrar-se os incêndios mais danosos.Downloads
Downloads
How to Cite
Issue
Section
License
-
Authors are responsible for the opinions expressed in the texts submitted to Finisterra.
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors must commit to complying with the “Guidelines for article submission”, on the RCAAP platform.
-
Whenever a text may require amendments based on suggestions made by the Scientific Reviewers and/or the Executive Committee, authors must agree to accept these suggestions and implement the requested changes. If authors disagree with any of the amendments suggested, they will need to provide justifications for each individual case.
-
Reproduction of materials liable to copyright laws has been granted permission in advance.
-
Texts are original, unpublished and have not been submitted to other journals.
License URL CC Attribution-NonCommercial-NoDerivatives (BY-NC-ND)